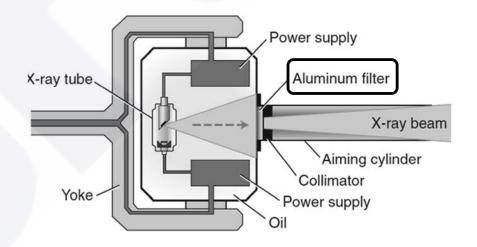


Syrian Private University Faculty of Dentistry Department of Oral Medicine

Radiation physics - 2



Imad Brinjikji

Filtration

The process of removing low-energy x-rays from the x-ray beam.

The maximum energy of photons (in eV)

The numerical value of the applied KV

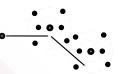
So it is called KVP

Filtration

Inherent

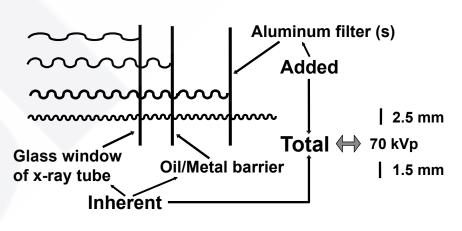
- The glass wall of the x-ray tube.
- The insulating oil.
- The barrier material that prevents the oil from escaping through the xray port.

Added

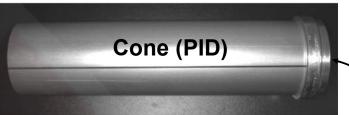

Aluminum

X-ray Spectrum results from (What about DC devices?)

Varying electron/nucleus distances

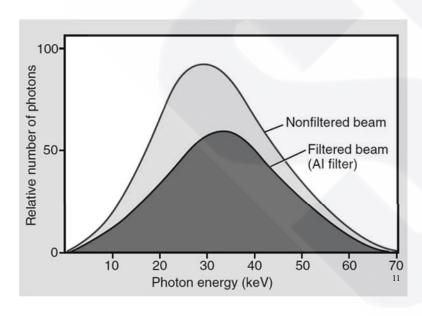

Multiple electron interactions

Varying voltage (for AC)


Total Filtration

Equivalent to 0.5 – 2 mm Al

Filtration



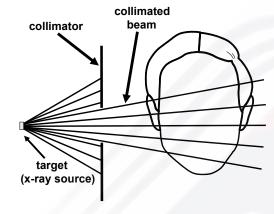
The filter is usually located in the end of the PID which is attached to the tubehead.

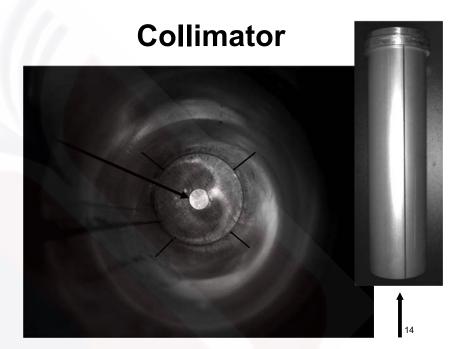
Filtration

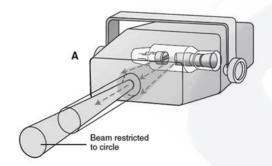
Collimation

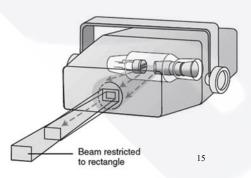
Regulates the size and/or shape of the x-ray beam.

- Area covered (less patient exposure)
- **↓** Scatter radiation

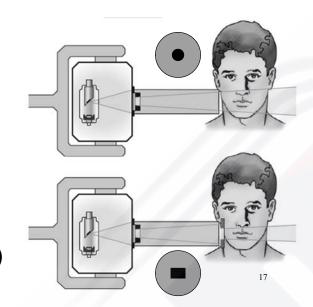

Collimation







1:



Comparison between rectangular and round (circular) collimators

Rectangular collimators decrease the radiation dose by up to 5-folds.

In rectangular collimators, the area of the patient's skin surface exposed is reduced by 60% over that of a round (7 cm) PID.

	Energy	vs.	Quantity
kVp	Î		Î
mA	No change		İ
Time	No change		Î
Filtration	Î		Ţ

Collimators also improve image quality.

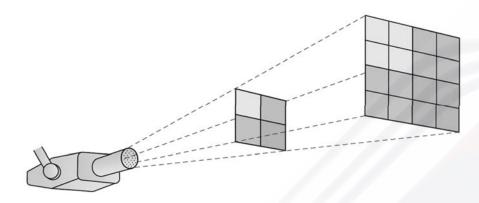
Less exposed tissues

Less interactions

Less scattering

Better image

Inverse Square Law


The intensity of radiation varies inversely as the square of the target*film distance

* target = source, focal spot, focus

$$\frac{\mathsf{I}_{\scriptscriptstyle 1}}{\mathsf{I}_{\scriptscriptstyle 2}} = \frac{\left(\mathsf{D}_{\scriptscriptstyle 2}\right)^{\scriptscriptstyle 2}}{\left(\mathsf{D}_{\scriptscriptstyle 1}\right)^{\scriptscriptstyle 2}}$$

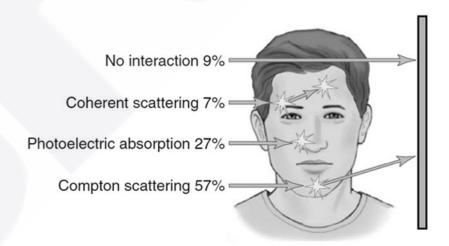
- 1

Inverse Square Law

 $I_1 = 100$ $I_2 = ?$ $D_1 = 1 \text{ cm}$ $D_2 = 10$

I₂
=
100x(1)² / (10)²
=
1

22


2

Interaction between X-ray photons and tissues

Scattering

Absorption

About 9% of the photons pass through the patient's head without interaction.

Absorption

Photons ionize absorber atoms, convert their energy into kinetic energy of the ejected electron, and cease to exist.

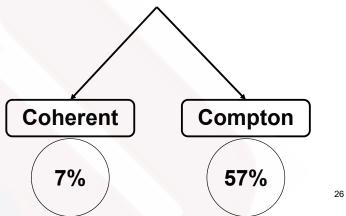
25

Coherent scattering

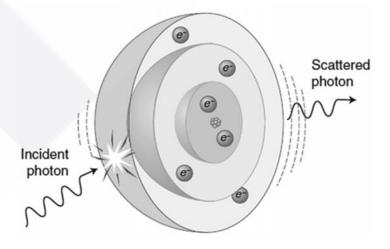
Low-energy incident photon (<10 keV).

A whole atom

The atom momentarily is excited.


The atom quickly returns to the ground state.

The photon cease to exist


A scattered photon is emitted (new) at a different angle from the path of the incident photon.

Scattering

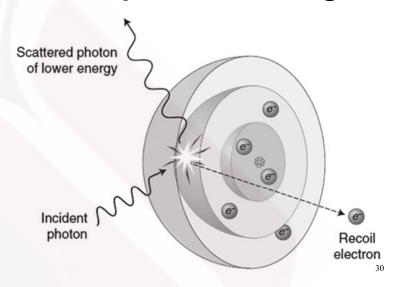
Photons interact with absorber atoms, but then move off in another direction.

Coherent scattering

Contribute little to film fog.

Compton scattering

A photon

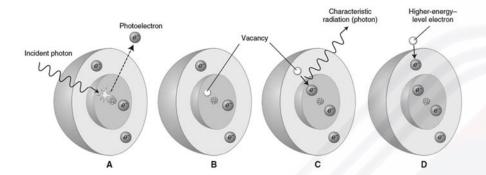

An outer orbital electron.

- The electron is ejected from the target atom (the atom is ionized and the e⁻ ionizes other atoms).
- The photon is scattered in another direction.

Compton scattering

 Compton scattering is greater in bone than in soft tissue.

Compton scattering

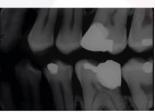

Absorption

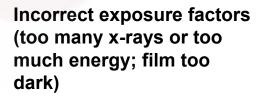
A photon

Inner e

- The photon cease to exist.
- An electron from an outer orbital fills the vacancy of the inner photon (the atom is ionized).
 - o A new photon is emitted.


Absorption




Absorption

The probability that a photon will be absorbed in bone is approximately 6.5 times than in soft tissue.

How changing KV, mA and exposure time affect the resultant radiograph?

Correct exposure factors



Incorrect exposure factors (not enough x-rays or energy too low; film too light)

Constant patient size

- 1. Proper kVp, mA, exposure time (e.t.) B
- 2. Increase mA; no change in kVp, e.t. A
- 3. Decrease e.t.; no change in kVp, mA C
- 4. Increase kVp; no change in mA, e.t.
- 5. Double mA, halve e.t.; no change in kVp B

Α

В

C

THE